MALÅ MIRA HDR
User Guide
Our Thanks...

Thank you for choosing Guideline Geo and MALÅ as your Ground Penetrating Radar solution provider. The very core of our corporate philosophy is to provide our users with the very best products, support and services. Our development team is committed to providing you with the most technologically advanced and easy-to-use GPR products with the capability to meet your needs for efficiency and productivity now, and into the future.

Whether this is your first MALÅ product, or addition to the MALÅ collection, we believe that small investment of your time to familiarize yourself with the product by reading this manual will be rewarded with a significant increase in productivity and satisfaction.

At Guideline Geo, we welcome comments concerning the use and experience with our products, as well as the contents and usefulness of this manual.

Guideline Geo team
Table of Contents

MALÅ MIRA HDR ... 1
User Guide ... 1
Our Thanks ... 2
Table of Contents ... 4
Preface ... 5
 About this Manual .. 5
 Additional Resources .. 5
 Feedback .. 5
Safety and Compliance User Notices .. 6
 ETSI EN 302 066-1 (European Telecommunication Standards Institute) 6
 Canadian and US regulations .. 6
 French translations .. 7
About MIRA HDR ... 8
Unpack. Inspect. Register ... 9
 Repacking and Shipping .. 9
 Registering MALÅ MIRA HDR .. 9
Overview MIRA HDR .. 10
System components ... 11
 Antennas and antenna box .. 11
 Antennas .. 11
 Blockmaster ... 11
 Antenna box .. 12
 Data acquisition software .. 13
 Positioning ... 14
 Assembly of GPS Support .. 15
 Power ... 16
 Accessories ... 17
 Carrier .. 17
 Encoders ... 18
System set up (how to connect) .. 19
Preface

About this Manual

This manual is written for the end user of the product and explains how to set up and configure the product, as well as providing detailed instruction on its use.

Additional Resources

GPR Training www.guidelinegeo.com/support-service-advice-training/
GPR Downloads www.guidelinegeo.com/support-service-advice-training/resource-center/

Feedback

Feedback regarding the contents of this manual or the product may be sent using any of the following channels.

Phone (Sweden) +46 953 34550
Phone (USA) +1 843 852 5021
Phone (China) +86 108 225 0728
Phone (Malaysia) +60 (0) 3 6250 7351
Phone (Australia) +61 438 278 902
Web www.guidelinegeo.com
Safety and Compliance User Notices

This GPR-device is certified according to FCC, subpart 15, IC RSS-220 and ETSI EN 302 066-1&2.

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: —Reorient or relocate the receiving antenna. —Increase the separation between the equipment and receiver. —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. —Consult the dealer or an experienced radio/TV technician for help.

According to the regulations stated in ETSI EN 302 066-1 (European Telecommunication Standards Institute):

The control unit should not be left ON when leaving the system unattended. It should always be turned OFF when not in use.

The antennas should point towards the ground, walls etc. during measurement and not towards the air.

The antennas should be kept in close proximity to the media under investigation.

Canadian and US regulations state that whenever GPR antennas are in use the following notes apply:

This Ground Penetrating Radar device shall be operated only when in contact with or within 1 m of the ground.

Only law enforcement agencies, scientific research institutes, commercial mining companies, construction companies and emergency rescue or firefighting organizations shall use this Ground Penetrating Radar Device.

This device complies with Industry Canada license-exempt RSS standards. Operation is subject to the following two conditions: (1) This device may not cause interference and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
Radiation Exposure Statement
To comply with ISED RF exposure compliance requirements, a separation distance of at least 20 cm should be maintained between the EUT and all persons during normal operation.

Pour se conformer aux exigences de conformité d’exposition ISDE RF, une distance de séparation d’au moins 20 cm doit être maintenue entre l’EST et toutes les personnes pendant le fonctionnement normal.

French translations:
Cet instrument de Géoradar se devra d’être opéré seulement en contact à même le sol ou en deça d’un mètre du sol.

Cet instrument de Géoradar se devra d’être utilisé seulement par les agences chargées de l’application de la loi, les instituts de recherches scientifiques, les compagnies minières à buts lucratifs, les compagnies de construction et les organisations responsables pour le sauvetage et la lutte contre les incendies.

Cet instrument répond aux exigences de la licence avec Industrie Canada- exempt des standards RSS. L’opération est sujette aux deux conditions suivantes : (1) Cet instrument ne peut pas causer une interférence et (2) cet instrument se doit d’accepter quelque interférence que ce soit, incluant une interférence qui pourrait causer une opération non-souhaitable de l’instrument.
About MIRA HDR

MALÅ MIRA HDR is a multi-channel antenna array for large scale 3D GPR measurements together with MIRAsoft HDR, the data acquisition software. The MIRA HDR system enables any measurement combination between the individual receiver and transmitter antennas used in the array; antennas, which are built with the MALÅ HDR technology (High Dynamic Range).

The antenna array can be precisely positioned and, with dense parallel swaths, produces extremely high-resolution time slices.
Unpack. Inspect. Register

Great care should be taken when unpacking the equipment. Be sure to verify the contents shown on the packing list and inspect the equipment and accessories for any loose parts or other damage.

Note: The packing list that is included with the shipment should be read carefully and any discrepancy should be reported to our sales department at www.guidelinegeo.com

Note: All packing material should be kept in the event that any damage occurred during shipping.

File any claim for shipping damage with the carrier immediately after discovery of the damage and before the equipment is put into use. Any claims for missing equipment or parts should be filed with Guideline Geo within fourteen (14) business days from the receipt of the equipment.

Repacking and Shipping

The Guideline Geo packing kit is specially designed for shipping MALÅ MIRA HDR. The packing kit should be used whenever shipping is necessary. If original packing materials are unavailable, pack the instrument in a box that is large enough to allow at least 80mm of shock absorbing material to be placed all around the instrument. This includes top, bottom and all sides.

Warning: Never use shredded fibres, paper or wood wool, as these materials tend to pack down and permit the instrument to move inside its packing box.

Please read our shipping instructions before returning instruments to Guideline Geo. These instructions can be found on our website at: www.guidelinegeo.com/Support/Service-Repairs.

Registering MALÅ MIRA HDR

By registering your equipment, you ensure that you receive up-to-date documentation, software upgrades and product information, which all helps to optimize the utilization of the equipment and realize the maximum return on your investment.

To register your equipment, simply visit – www.guidelinegeo.com/product-registration on our website and submit the registration form.

Note: The serial numbers are found on the antennas, one on the Tx and two on each Rx unit.
Overview MIRA HDR

In short, the MIRA HDR system comprises the following parts:

- HDR antennas; separate transmitter (Tx) and receiver (Rx) antennas with a central frequency of 500MHz.
- MIRA antenna box; special antenna box for deployment of the MIRA system. The ‘standard’ antenna box is set-up for a regular 22-channel swath, with 12 Rx and 11 Tx antennas, but it is possible to program any Tx-Rx combination resulting in, if all are selected, 132 channels.
- Measurement wheel; used to trigger data collection and keep track of the distances.

To make the system complete and running, the following parts are also needed:

- Power supply for the antenna box.
- Field computer or tablet (with Windows 10x64) with MIRAsoft HDR software installed, to collect, save and view multi-channel data. We highly recommend the use of a rugged field computer.
- Positioning system e.g. RTK-GPS or robotic total station.
- Suitable carrier solution (to carry or pull the antenna box) or arrangement to hand-push the system.

To connect the parts, see System set-up section. Instructions and information for carrying out a multi-channel MIRA measurement can be found in the MIRAsoft HDR User Guide.
System components

Antennas and antenna box

Antennas
The MIRA HDR system is designed to handle shielded separable antennas only, no other antennas can be used with the MIRA HDR system. The MALÅ HDR antennas are designed and built to very tight tolerances to achieve a ‘near-identical’ response (signature) from each channel.

The MALÅ HDR shielded antennas are available with a centre frequency of 500MHz. This frequency will cover investigations ranging from 0m to approximately 3m depth in non-conductive ground.

Each antenna element is 128 x 222 mm in size. The Tx is contained in one box, while the Rx consists of two connected boxes. In the Rx antenna the antenna elements are placed 130 mm apart giving a channel separation of 6.5 cm.

The Tx has one connector providing both power and trig signal. The Rx has two connectors. One provides power and communication, the other provides the trig signal. The status of the Rx antennas can be seen when connected to the laptop with MIRAsoft HDR installed.

Blockmaster
The blockmaster contains the electronics for generating the trig signals and their timing. It is situated above the antennas and can be raised for disconnecting and reconnecting the units.

To access the connectors on the blockmaster:
- Remove the two screws on each side of the blockmaster (marked with circles in the picture below)
- If needed, loosen but do not remove the remaining two screws (marked with squares in the picture below)
- Lift up the blockmaster
- Tighten the screws (marked with square), if needed, to hold the blockmaster in place.
- Connect or disconnect antennas
- Lower the blockmaster
- Insert and tighten the two screws on each side of the blockmaster (marked with circles)
- Tighten the remaining screws (marked with squares)
Antenna box
The antenna box comes in one standard version, with 22 channels. This means 11 transmitters and 12 receivers placed in two rows within the antenna box.

Each antenna element has its own secured slot and is connected via communication cables to the Blockmaster.
A connector panel can be found on the rear of the antenna box. Here power, GPS, Ethernet etc. are connected. Also see System set up section.

The System diode blinks while the MIRA HDR system is booting; it becomes constant once the system is ready to connect to MIRAsoft HDR. The GPS diode will blink until the internal GPS clock is ready to sync with the external GPS clock (to pair the GPS coordinates with GPR traces).

Note: When no connectors are connected, the protective caps of all the connectors MUST be attached. This prevents dirt and moisture entering the antenna box and makes the system IP65 compliant.

Data acquisition software

The data acquisition software for the MIRA HDR system is called MIRAsoft HDR, a simple and straightforward application designed to collect, view and save MIRA HDR data. For more information, see the MIRAsoft HDR User Guide.

The computer or tablet used for measurements should be placed in a convenient position for the operator to monitor progress whilst carrying out the measurements. An Ethernet cable is used to transfer the measured data from the antenna box to the data acquisition computer or tablet for storage and display in MIRAsoft HDR.

Note: It is highly recommended to use the provided Ethernet cable with IP-classed connector housing to protect the connection from water and dirt ingress.

MIRAsoft HDR aids collection of data with a satisfactory overlap between swaths and will provide...
Positioning

The antenna array must be positioned with a high level of accuracy throughout the survey. A precise control of the geometry is an absolute prerequisite to make the resulting 3D radar picture correct and reliable. Centimetre accuracy is needed over the whole investigation site. The MIRA HDR system can be positioned by using an RTK GPS system and with a Total station solution (in the near future). The system can be used without a base station if a suitable rover unit is used and a correction subscription service is available.

The positioning system needs to export the positioning data in NMEA 0183 GGA format for the GPS option, so that the MIRAssoft HDR data acquisition software can record it and assign it correctly to the measured GPR swaths.

The GPS antenna can be connected to Guideline Geo carrier solutions or can be mounted on the survey vehicle:

Note: The placement and recording of the GPS antenna or Total Station prism’s position must be thorough; this is described in the MIRAssoft HDR User Guide.

The best choice of positioning method will depend upon the conditions at the investigation site.
Some points to consider:

- If working in an environment with a number of trees, high buildings or other infrastructure that might disturb the communication with GPS satellites, a Total Station is preferred. In these types of environments, it can also be hard to define lines and point features with the GPS.
- However, on open ground with lower vegetation and/or fewer overhead obstacles, the RTK GPS solution is most often a faster and easier method of positioning.
- The Total Station needs line of sight and possibly an extra operator for the Total Station if the tracking fails.
- If the investigation area is large, the Total Station may need to be moved and new Total Station positions defined, which can be more time consuming. However, every type of investigation area can be covered by a Total Station which is not the case with a GPS.

It should also be mentioned that temporary loss of tracking will not cause the data to be useless, provided the start and end points of each swath are well defined.

Note: A GPS is very effective when it works!
In order to be 100% sure that you can perform the investigation a Total Station maybe required.

Note: Measurements can be carried out without any positioning system but is not generally recommended unless absolutely necessary. The measurement lines should be straight and with an even spacing so coordinate files for post-processing software can be created afterwards.

Assembly of GPS Support

- Assemble the antenna support using the 6 provided M6 screws.
- Place the GPS rod in the GPS mounting plate.
- Remove 6 screws on the GPS mounting plate, 3 on each side.
- Place the GPS support over the GPS rod and the GPS mounting plate. The holes on the support should match the screws on the GPS mounting plate, 2 on each side.
- Attach the 6 screws removed in step 3.
Power

Depending on your system the power supply can be customized.

Preferably, a connection to the alternator of the carrying vehicle can be made but, if this is not an option, arrangements with portable power sources may be considered and solutions are provided by Guideline Geo with suitable cables and boxes.

It is recommended to use a LiFe-battery for longer power supply. An ordinary car battery requires exchanges during a working day as the battery will last approximately 4-5 hours. The MIRA HDR system operates at 10-14V.

If the battery is connected in the wrong polarity, a buzzer tone will sound. If power consumption is unexpectedly increasing, the internal fuse may blow. It is situated behind the connector panel and is an easily replaceable, standard vehicle accessory fuse.

On the hand-pushed solution, the battery is placed on the rear side of the antenna. If using the Guideline Geo trailer the battery has a ready-made shelf. With other carrier solutions the battery can be placed in the vehicle.
Note: It is important to turn off the power when the antenna array is not in use, otherwise it will drain the power supply.

Accessories

Carrier
The prime applications for the MIRA systems are radar surveys over large areas and, practically, it may not be feasible or particularly efficient to move the array manually over thousands of square meters. To gain the maximum coverage, a motorised vehicle would be recommended. It is possible to ship the radar parts and accessories necessary to attach the system to any carrier, but this typically requires a case-by-case assessment of exact requirements and dimensions, and thus cannot be described precisely here.

For example, lawn-mower type vehicles or small utility vehicles are suitable for carrying the MIRA HDR arrays. This type of arrangement is highly recommended by Guideline Geo on surfaces like grass and high vegetation. For small size scanning on concrete and asphalt the antenna box can be attached to a special hand-pushed carrier.

Whatever vehicle or push-solution is chosen to carry the MIRA HDR antenna box, some adoption for the radar system has to be done, these can include:

- Fastening arrangement for the array box.
- Power supply, typically the vehicle alternator must be exchanged to one with higher current specifications. Cables, fuses, and switches must also be installed.
- Attachment for laptop mounting.

If the carrier is part of the purchase, these details will be taken care of by Guideline Geo. However, the client may find it more suitable to source the vehicle locally, in which case they must arrange the mounting details themselves. It is most highly recommended to use the power from the carrier as the antenna array box has a reasonably high power consumption. The vehicle must be able to support 12A@12V for the 22 channel MIRA HDR.
Encoders
For positioning along the measurement swaths and to control the data collection, the MIRA HDR system is compatible (together with an adapter) with all MALÅ measuring wheels.

- The 300 mm wheel is recommended when using the hand-pushed carrier solution
- If the system is used front loaded, an encoder kit is available to mount on the survey vehicle
- If the Guideline Geo trailer is used, the encoder is built in

Vehicle mounted encoder and the 300mm measuring wheel
System set up (how to connect)

1. Connect the battery cable using the provided power cable to the **Power** connector on the antenna box connector panel.

 Note: Make sure to connect the battery with correct polarity (Red = “+”, Black = “-”) otherwise a buzzer sound will be given when the cable is connected and the system will not start.

2. Connect your GPS. We provide two 12V output connectors on the system’s connector panel. Contact Guideline Geo for adapters for your brand of GPS.

 Note: The 12V connectors are secured with a 2A e-fuse. The fuse will be restored after a power-cycle.

3. Connect the measuring wheel/encoder to the connector marked **Wheel** on the antenna connector panel.

4. Connect the Ethernet cable between the computer or tablet with MIRAsoft HDR installed and the connector marked **MIRAsoft** on the connector panel.

5. Power up the MIRA HDR system and wait for the MIRAsoft HDR **System** diode on the connector panel to change from blinking to solid (this means that the hardware is ready for connecting to MIRAsoft HDR).

6. Start MIRAsoft HDR, the system automatically connects, and the software will report **Ready**.

7. See the MIRAsoft HDR manual for a detailed guide on how to operate the software.

 Note: The **System** diode will be blinking while the MIRA HDR system is booting. When the light is steady, the system is ready to be connected to MIRAsoft HDR. The GPS diode will be blinking until the internal GPS clock is ready to sync with the external GPS clock.

 Note: Please use the dust caps for the connectors when there is no plug inserted. This prevents dirt and moisture entering the antenna box and makes the system IP65 compatible.