Our Thanks...

Thank you for choosing Guideline Geo and MALÅ as your Ground Penetrating Radar solution provider. The very core of our corporate philosophy is to provide our users with the very best products, support and services. Our development team is committed to providing you with the most technologically advanced and easy-to-use GPR products with the capability to meet your needs for efficiency and productivity now, and into the future.

Whether this is your first MALÅ product, or an addition to the MALÅ collection, we believe that a small investment of your time, to familiarize yourself with the product by reading this manual, will be rewarded with a significant increase in productivity and satisfaction.

At Guideline Geo, we welcome comments concerning the use and experience with our products, as well as the contents and usefulness of this manual.

Guideline Geo team
Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of Guideline Geo. Your rights to the software are governed by the accompanying software license agreement. The MALÅ logo is a trademark of Guideline Geo registered in Sweden and other countries.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by Guideline Geo in good faith. However, all warranties implied or expressed, including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded. This document is intended only to assist the reader in the use of the product and every effort has been made to ensure that the information in this manual is accurate. Guideline Geo shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Guideline Geo, the MALÅ logo, are trademarks of Guideline Geo, registered in Sweden and other countries. Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. Guideline Geo assumes no responsibility with regard to the performance or use of these products.

Guideline Geo AB
Head-office
Löfströms Allé 6A
172 66 Sundbyberg

www. guidelinegeo.com

Release Date:
Version:
Table of Contents

Our Thanks..2

Table of Contents ..4

Preface ...6

 About this Manual ..6

 Additional Resources ..6

 Feedback..6

Safety and Compliance User Notices ..7

Get Ready. Set up. Go..8

 MALÅ GroundExplorer (GX) HDR Features ..8

 Advantages compared to conventional GPR technology ..8

Accessories and Optional Extras ...9

 MALÅ GX HDR Rough Terrain Cart (RTC) ..9

 MALÅ Controller Holder and Towing Options ..9

 Additional Battery and charger ...10

 Shipping Cases ..10

 Measuring Wheels and Devices ...10

 Others ...10

Unpack. Inspect. Register ..11

 Repacking and Shipping ..12

 Registering MALÅ GX HDR ..12

System Assembly and Set Up ...13

 Connecting it all up ..14

 Connect data cable to the GX controller ..14

 Connect the data cable to the antenna ..14

 Mount the battery to the antenna ..14

 Connect the encoder wheel to the antenna ...15

 Power up ..15

 Power down ...15

Antenna LED Indicators ..16

Antenna Battery Maintenance and Charging ..16

 Powering the GX antenna/controller from the optional battery bag or other external battery source ...18

Charging the GX Controller ...18

User Interface ...19

Start Menu ..20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigating the Menus and Options</td>
<td>20</td>
</tr>
<tr>
<td>Main 2D Project Menu</td>
<td>21</td>
</tr>
<tr>
<td>Zoom Function</td>
<td>22</td>
</tr>
<tr>
<td>Main Menu Icons</td>
<td>22</td>
</tr>
<tr>
<td>Measurement Parameters Menu</td>
<td>24</td>
</tr>
<tr>
<td>Acquisition Parameters Menu</td>
<td>26</td>
</tr>
<tr>
<td>Wheels Edit and Calibration Menu</td>
<td>27</td>
</tr>
<tr>
<td>Wheels Edit Options</td>
<td>28</td>
</tr>
<tr>
<td>Display Parameters Menu</td>
<td>29</td>
</tr>
<tr>
<td>Operating Instructions</td>
<td>30</td>
</tr>
<tr>
<td>2D Project</td>
<td>31</td>
</tr>
<tr>
<td>3D Grid Project</td>
<td>33</td>
</tr>
<tr>
<td>Creating a 3D Project</td>
<td>33</td>
</tr>
<tr>
<td>ObjectMapper Project</td>
<td>39</td>
</tr>
<tr>
<td>Creating an Object Mapper Project</td>
<td>39</td>
</tr>
<tr>
<td>Object Mapper Measurements with Baseline</td>
<td>41</td>
</tr>
<tr>
<td>Object Mapper measurements with GPS</td>
<td>43</td>
</tr>
<tr>
<td>Continuing an Object Mapper measurements Project</td>
<td>44</td>
</tr>
<tr>
<td>Positioning Menu</td>
<td>44</td>
</tr>
<tr>
<td>File Manager</td>
<td>45</td>
</tr>
<tr>
<td>MALÅ GeoDrone 80 Project</td>
<td>46</td>
</tr>
<tr>
<td>System Menu</td>
<td>47</td>
</tr>
<tr>
<td>GPS options and settings</td>
<td>49</td>
</tr>
<tr>
<td>WiFi options and settings</td>
<td>51</td>
</tr>
<tr>
<td>WiFi Connection</td>
<td>51</td>
</tr>
<tr>
<td>Wire WiFi Channel Selection</td>
<td>52</td>
</tr>
<tr>
<td>Restoring Missing Traces</td>
<td>53</td>
</tr>
<tr>
<td>WiFi Initiation via Wire</td>
<td>54</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>55</td>
</tr>
<tr>
<td>System Malfunctions</td>
<td>55</td>
</tr>
<tr>
<td>Service and Repairs</td>
<td>56</td>
</tr>
<tr>
<td>Technical Support</td>
<td>56</td>
</tr>
<tr>
<td>Technical Specification</td>
<td>57</td>
</tr>
</tbody>
</table>
Preface

About this Manual

This manual is written for the end user of the product and explains how to set up and configure the product, as well as providing detailed instruction on its use. Basic theory for Ground Penetration Radar is outlined to help the operator understand the underlying technology. References for thorough discussions of this topic and applications for the technology are also presented.

Known issues and limitations, precautions, best practices and tips are also presented so that the most efficient and productive use can be achieved.

Additional Resources

GPR Training www.guidelinegeo.com/1105-2
GPR Applications www.guidelinegeo.com/technical-support
GPR Case Studies www.guidelinegeo.com/solutions/case-stories

Feedback

Feedback regarding the contents of this manual or the product may be sent using any of the following channels.

Phone (Sweden) +46 953 34550
Phone (USA) +1 843 852 5021
Phone (China) +86 108 225 0728
Phone (Malaysia) +60 (0) 3 6250 7351
Phone (Australia) +61 438 278 902
Web www.guidelinegeo.com
Safety and Compliance User Notices

This GPR-device is certified according to FCC, subpart 15, IC RSS-220 and ETSI EN 302 066-1&2.

According to the regulations stated in ETSI EN 302 066-1 (European Telecommunication Standards Institute):

The control unit should not be left ON when leaving the system unattended. It should always be turned OFF when not in use.

The antennas should point towards the ground, walls etc. during measurement and not towards the air.

The antennas should be kept in close proximity to the media under investigation.

Canadian and US regulations state that whenever GPR antennas are in use the following notes apply:

This Ground Penetrating Radar device shall be operated only when in contact with or within 1 m of the ground.

Only law enforcement agencies, scientific research institutes, commercial mining companies, construction companies and emergency rescue or firefighting organizations shall use this Ground Penetrating Radar Device.

This device complies with Industry Canada license-exempt RSS standards. Operation is subject to the following two conditions: (1) This device may not cause interference and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

French translations:

Cet instrument de Géoradar se devra d’être opéré seulement en contact à même le sol ou en deça d’un mètre du sol.

Cet instrument de Géoradar se devra d’être utilisé seulement par les agences chargées de l’application de la loi, les instituts de recherches scientifiques, les compagnies minières à buts lucratifs, les compagnies de construction et les organisations responsables pour le sauvetage et la lutte contre les incendies.

Cet instrument répond aux exigences de la licence avec Industrie Canada- exempt des standards RSS. L’opération est sujette aux deux conditions suivantes : (1) Cet instrument ne peut pas causer une interférence et (2) cet instrument se doit d’accepter quelque interférence que ce soit, incluant une interférence qui pourrait causer une opération non-souhaitable de l’instrument.
Get Ready. Set up. Go
This section walks through the steps for getting ready, setting up and basic operation of your new MALÅ GX HDR. Information is also available on what to do in case the equipment may have been damaged during shipment.

Note: If a defect in the equipment is discovered, make sure to contact MALÅ Geoscience prior to use and follow the instructions for Repacking and Shipping in this section.

MALÅ GroundExplorer (GX) HDR Features
The HDR-series (High Dynamic Range) is the latest addition to Guideline Geo’s versatile MALÅ product range. It is a completely new design, based on patented cutting edge technology. These new antennas are not just an upgrade of earlier designs; they represent a leap in GPR technology, not seen in the past 15 years.

Advantages compared to conventional GPR technology

- Real-time sampling technology – HDR enabled
- Significantly faster data acquisition rates
- Greater signal-to-noise ratio
- Increased bandwidth
- Unprecedented dynamic range and resolution
- 32 bit data output
- Greater depth penetration
- Better detection capabilities
Accessories and Optional Extras

MALÅ GX HDR Rough Terrain Cart (RTC)

MALÅ Rough Terrain cart is a robust carrier for Guideline Geo Shielded Antennas designed to handle rough GPR surveying. The cart is suitable for Guideline Geos shielded antennas 160, 450 and 750 MHz. Visit our website for more information.

MALÅ Controller Holder and Towing Options

Controller holder, rough terrain skid plate, tow attachment and tow handle.
Additional Battery and charger

Additional Li-ion Battery Pack 12 V (5 Hour) for the MALÅ GX HDR.

Shipping Cases

Robust shipping cases for the MALÅ GX Controller and accessories.

Measuring Wheels and Devices

GX Measuring Wheel

GX Spring-loaded Wheel

String Encoder

Others

To the GX system there is also a GPS bracket and extension pole for easy attachment of a GPS antenna on the GPR antenna.
Unpack. Inspect. Register

Great care should be taken when unpacking the equipment. Be sure to verify the contents shown on the packing list and inspect the equipment and accessories for any loose parts or other damage.

Note: The packing list that is included with the shipment should be read carefully and any discrepancy should be reported to our sales department at www.guidelinegeo.com

Remove the protective shipping cover on the antenna.

Using the supplied Torx screwdriver, remove the 4 Torx screws.

Remove and store the black plastic cover for future use, if shipping is required at a later date.

Note: All packing material should be kept in the event that any damage occurred during shipping.

File any claim for shipping damage with the carrier immediately after discovery of the damage and before the equipment is put into use. Any claims for missing equipment or parts should be filed with Guideline Geo within fourteen (14) business days from the receipt of the equipment.
Repacking and Shipping

The Guideline Geo packing kit is specially designed for shipping MALÅ GX HDR. The packing kit should be used whenever shipping is necessary. If original packing materials are unavailable, pack the instrument in a box that is large enough to allow at least 80mm of shock absorbing material to be placed all around the instrument. This includes top, bottom and all sides.

Warning: Never use shredded fibres, paper or wood wool, as these materials tend to pack down and permit the instrument to move inside its packing box.

Please read our shipping instructions before returning instruments to Guideline Geo. These instructions can be found on our website at: www.guidelinegeo.com/Support/Service-Repairs.

Registering MALÅ GX HDR

By registering your equipment, you ensure that you receive up-to-date documentation, software upgrades and product information, which all helps to optimize the utilization of the equipment and realize the maximum return on your investment.

To register your equipment, simply visit – www.guidelinegeo.com/Support/Product-Registration on our website and submit the registration form.

Note: Two serial numbers are attached to the equipment, (1) on the underside of the monitor and (2) on top of the antenna under the battery pack.
System Assembly and Set Up

MALÅ GX HDR is an integrated system, consisting of a GX controller and HDR antenna, linked through a single data/power cable.

The MALÅ GX Controller is mounted on the handle of the Rough Terrain Cart or the Controller Holder and connects to the HDR antenna through a single data/power combination cable, and displays the data as the instrument is moved. Use the two supplied knobs or Velcro to mount the controller.

Rough Terrain Cart (RTC) The cart is suitable for shielded antennas; 160, 450 and 750 MHz.
Connecting it all up

Connect data cable to the GX controller

Note: Look for the countersink in the power cable and place it towards the mark on the connection. Push lightly. If you have it in the correct orientation it will go into its position smoothly. To disconnect, pull out holding the metal part of the connector.

Connect the data cable to the antenna

Mount the battery to the antenna
Connect the encoder wheel to the antenna.

Always remember to attach the sprint as well for a firm connection of the wheel.

Note: The precision of the encoder wheel depends on several factors, such as; the condition of measurement surface, the pressure applied on the wheel and possible wear.

Warning: When using MALÅ GX HDR with a cart or measuring wheel, the wheel calibration must be changed to the appropriate wheel; enter the Settings Menu on the GX Controller and change the Acquisition Parameters to the correct wheel.

Power up
Start the MALÅ GX HDR by pressing the power button on both the HDR antenna and the HDR Controller.

Power down
To turn the antenna and monitor off, first select Shut down from the Start Menu, confirm the action by selecting YES. When the Controller screen is black, push the power button on the monitor and release quickly.

Note: The antenna will automatically turn off when the monitor is powered down.

Note: If a power cable is accidentally pulled out, the MALÅ GX HDR components will start automatically when reconnected.
Antenna LED Indicators

Three LED-indicators are mounted beneath the antenna product label.

DATA: Continuous flashing light indicates the unit is working properly and ready for data collection. Irregular flashing on this LED means erroneous antenna configuration or possible software version issue. The LED switches to continuous illumination when the unit enters data collection.

GPS: Flashing light mean that the GPS option is installed and that the internal computers are successfully communicating with the GPS-unit. This LED switches to continuous light whenever there’s 4 or more satellites available.

INFO: This LED indicates a serious system error, whenever active. Please contact your local Guideline Geo representative.

Antenna Battery Maintenance and Charging

A 12V/8.7Ah Li-ion battery pack is shipped with the MALÅ GX HDR Antenna and is the recommended power source for the antenna.

Under normal operating and handling conditions, this battery is capable of up to 5 hours of continuous operation.

MALÅ GX HDR antenna will automatically turn itself off when the battery voltage drops below 10V. A meter showing the remaining battery capacity is displayed on the Controller.

Tip: If storing the battery for long periods of time, discharge the battery to approximately 50%, this will maximise the life of the battery. Use the battery level indicator on the Controller to estimate 50%, wait until the indicator enters the yellow section, power down and remove the battery. This also applies to the internal battery in the Controller.
Warning: Power sources other than the recommended 12V/8.7Ah Li-ion battery are not compatible with the power meter and the status of the battery will not be indicated accurately.

To remove and charge the antenna battery, pull the battery release pin on the rear of the battery module and gently remove the battery pack by lifting upward and in a backward direction.

When re-mounting the battery, gently attach the d-sub connector on front of the battery with the d-sub on the mounting tower. Then pull the battery release pin and press down on the battery until the release pin slots into place.

With the use of the correct adaptor, connect the supplied battery charger to the battery pack.

The LED light on the charger indicates the following:

- Red = Charged < 80%
- Yellow = Charged 80-100%
- Green = Maintenance charging

Tip: Though recharging up to 80% of the full capacity is typically very fast, it is recommended to keep the battery charging until it is fully charged to help extend the battery life.

Note: The battery charger can be left on after the battery has been fully charged where it will then automatically enter a maintenance-charging mode.

Charging time for the 8.7Ah batteries is approximately 3-5 hours (80%-100%).

The temperature when charging should be within Zero to +45°C / 32 to 110°F. Do not charge the batteries in direct sunlight or when surrounding temperature is below freezing point.
Powering the GX antenna/controller from the optional battery bag or other external battery source

With the use of the optional antenna battery adaptor, the GX antenna can be powered from the optional battery bag.

Note: The battery bag can also power the GX Controller.

There are also cables available for use together with external 12 V batteries.

Charging the GX Controller

Connect the supplied power supply to the socket on the right hand side of the GX Controller data/power connectors.

The battery indicator on the GX Controller will show the charging cycle.

The red lightning bolt indicates the GX Controller is charging

The green lightning bolt indicates the GX Controller is fully charged

Note: The bars on the top row indicates the battery level in the Controller, the bottom row indicates the battery level in the antenna battery.

Tip: The GX Controller can be charged without the need for the Controller to be switched on. The charge cycle will take 3 - 4 hours to complete if fully discharged.
User Interface

The following sections contain a detailed description of the user interface and give tips and warnings designed to help the user achieve the highest possible level of productivity and safety while operating the MALÅ GX HDR.

Start Menu 20
Navigating the Menus and Options (Navigator) 20
Main Menu 21
Zoom Function 22
Main Menu Icons 22
Measurement Parameter Menu 24
Acquisition Parameters Menu 26
Wheels Edit and Calibration Menu 27
Wheels Edit Options 28
Display Parameters Menu 29
Start Menu

The MALÅ GX Controller uses dedicated software designed specifically for the display and collection of GPR data.

Note: The Controller utilizes a sunlight readable LCD display for maximum visibility in daylight.

The Start Menu has the different project options, the Positioning information, File manager and the System Menu button.

The icon indicates the connection status to the antenna.

Navigating the Menus and Options

The GX Controller is operated with a dual function Navigator for selecting options and functions. Menu items are selected by rotating the Navigator clockwise or anti-clockwise. The selected item is then executed by pushing the button.

The Navigator control fitted to MALÅ GX Controller works in a similar way to a computer mouse allowing the user to navigate menus and update data. Rotating the knob either allows sequential scrolling through menu options, to make a menu selection, or changes selected parameter values. Pressing the knob either executes the currently selected menu option or sets the value of the selected parameter.

Note: The controller Start Menu appears about 20 seconds after turning on the controller and HDR antenna.
Main 2D Project Menu

As 2D projects are the most common ones, the different main user interfaces are explained with this project type.

The items available under the Main Menu vary depending whether the system is in **Stopped mode** or **Started mode**.

Tip: The MALÅ GX Controller is equipped with a **Zoom Function** for enlarging areas of interest in the GPR Profile (see below).
Zoom Function

Use the **Navigator** to select the **Vertical scrollbar**. The vertical scrollbar turns yellow when selected. Push the **Navigator** once to activate scrolling. The **Vertical scrollbar** will turn blue indicating that it has been activated. Push, hold and turn the **Navigator** to zoom in and out, the vertical scroll bar will be blue with arrows.

![Zoom Function Diagram]

Main Menu Icons

Quit

Quit and shutdown the system after completing the radar measurements.

Note: If the QUIT option is executed but the Controller is not turned off immediately, the unit has to be put through a power cycling sequence before it can be restarted. This is achieved by pressing the power switch on the Controller and then waiting for 5-10 seconds before pressing the power switch again. If this procedure is not followed, the unit will fail to turn on.

New

Select the **New** button to start scanning. The GPR data will begin to appear on the black screen as the unit is moved forward.

Cont

Select the **Continue** button to resume the last stopped measurement.

Measurement Parameters

Press the **Measurement Parameters** button to access the measurement parameters menu. See the **Measurement Parameters** section for more information on the use of this option.

Full screen

The **Full screen** button toggles the display to full-screen mode where the menu and status information are hidden and the entire display is used to display the GPR profile.
The **Background removal filter** button is used to remove horizontal lines/reflections caused by noise from the GPR profile. By rotating the **Navigator**, various levels of background removal can be applied. The effect of the filtering can be seen when the button is deactivated, the level can be gradually adjusted to create the clearest and most interpretable image possible.

The **Contrast** button is used to set the contrast of the GPR profile. Rotating the **Navigator** increases and decreases the contrast level.

The **Time gain** button is used to adjust the time gain for the GPR profile. The **Navigator** is rotated to increase or decrease the applied time gain.

The Screen shot button makes a jpg image of the current radargram and can be downloaded from the File Manager.

Note: When the **Auto Gain** option in the **System Menu** is selected, the manual **Time gain** is deactivated and removed from the main screen.

Tip: Gain is very useful for making targets appear brighter in the GPR profile, this is especially important when searching for deeper targets.
Measurement Parameters Menu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>5.05</td>
</tr>
<tr>
<td>Time Gain</td>
<td>Manual</td>
</tr>
<tr>
<td>Soil Velocity</td>
<td>100 [m/µs]</td>
</tr>
<tr>
<td>Acquisition Mode</td>
<td>Time Triggering</td>
</tr>
<tr>
<td>Time interval</td>
<td>0.100 s</td>
</tr>
</tbody>
</table>

Depth:

Depth defines the length of the radargram vertical scale. This is sometimes referred to as the time window length. In this case, the set velocity is used to calculate the depth window.

Note: This value will vary if the soil velocity measurement parameter is changed.

Time Gain:

Set to manual or auto (Automatic Gain Control).

Note: Manual gain activates the Time Gain button on the main screen and allows the user to manually adjust the gain. Selecting Auto deactivates the Time Gain button on the main screen and the GX HDR Controller will apply the highest gain level for the signal to noise ratio.

Soil Velocity:

Set the velocity based on soil type. Setting the velocity allows the adjustment of the depth scale for differing soil conditions.

Warning: This is a critical setting if accurate depth information is required. Soil conditions can vary rapidly with location and all depth information must be used with caution.

Tip: The velocity can be set during the post-processing stage; it is not critical that this measurement is established during the data collection stages, unless marking the depth on site.

Acquisition Mode:

Set the type of trigger to be used for initiating a measurement. Three triggering options are available: Wheel, Time, or Keyboard Triggering.
Note: Changing the three different trigger options will change the options listed below the Acquisition Mode icon.

Note: When measuring by time, make sure that the time interval is appropriate.

Wheel type:

Selecting the Wheel type icon can choose a selection of predefined wheels from the drop-down list.

Tip: Additional wheels and individual calibration can be added to the list by accessing the Acquisition Parameters menu.

Note: The accuracy of the encoder wheel is not infinite and depends on several factors, such as the measurement surface, the pressure applied on the wheel and possible wear. If you are unsure of the encoder wheel accuracy, a re-calibration should be made.

<table>
<thead>
<tr>
<th>Trigger List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel (17cm)</td>
</tr>
<tr>
<td>Wheel (30cm)</td>
</tr>
<tr>
<td>Rough Terrain Cart</td>
</tr>
<tr>
<td>Hip chain</td>
</tr>
</tbody>
</table>

Point interval:

Point interval sets the distance between the measured points/traces in the radargram.
Acquisition Parameters Menu

Choose **Forward** or **Backward** depending on the direction of the scan whilst utilising the **Measuring Wheel** or **Cart**.

Measurement direction

Note: This option will not be available when **Time** or **Keyboard Triggering** is selected on the **Measurement Parameters Menu**

Wheels edit and calibration

Select the **Wheels Edit and Calibration** to enter the **Wheels menu**. See below.
Wheels Edit and Calibration Menu

Choose the Select Wheel to highlight the wheel to be edited or deleted from the list.

Or Choose the Create New Wheel option which allows the user to select a new type of wheel in addition to the standard list. This may be useful if the encoder is attached to a non-standard wheel.

Then select Edit Current Wheel calibrate the wheel, see Wheel Edit Options section below for further details.

Note: First use the Select Wheel option to highlight the wheel to be edited.

Choose the Delete Current Wheel option to remove a selected wheel from the list.

Note: First use the Select Wheel option to highlight the wheel to be deleted.
Wheels Edit Options

Select **Wheel Name** to create a name for the new wheel.

Select **Forward or Reverse** depending on the direction of the wheel during the calibration process.

Measure a distance on the ground using a measuring wheel or tape. Enter this distance after selecting **Distance for Calibration**.

Tip: For a higher level of accuracy, measure a length over the surface where the GPR is being used. A longer distance will average out any surface variations.

Select **Start Calibration** once the correct details are entered into the above options and when the GPR is positioned over the beginning of the measured length. Move the GPR towards the end of the measured length, when this process is complete, select **Stop Calibration**.
Display Parameters Menu

The palette refers to the display of the radargram, there are 3 options, a grey scale and 2 color options.

If trace view is ON, a small window will appear on the right hand side of the radargram during measurements, showing the actual measured trace.

The intensity of the screen light can be changed with the backlighter option.

Tip: Reducing the backlight will extend the battery life between charges.

Saves changes and exits to previous screen

Closes the Menu without applying changes.
Operating Instructions

The following sections walk you through more advanced modes of operation of the equipment.

2D Project 31
3D Grid Project 33
 Creating a 3D Project 33
Object Mapper Project 39
 Creating an Object Mapper Project 39
 Object Mapper Measurements with Baseline 41
 Object Mapper with GPS 43
 Continuing an Object Mapper Measurements Project 44
Positioning Menu 44
File Manager 44
MALÅ GeoDRone 80 Project 46
System Menu 47
GPS Options and Settings 49
Wi-Fi Options and Settings 51
 Wi-Fi Connection 51
 Wi-Fi Channel Selection 52
 Restoring Missing Traces 53
 Wi-Fi Initialisation Via Wire 54
Select 2D Project from the main screen options to conduct a simple 2D profile.

Select New to begin the measurement.

See Main 2D Project Menu section for a full description of the icons.

Note: Check **Settings** before commencing a measurement. See section Measurement Parameters Menu above.

Various markers can be inserted into the radargram by selecting the **Markers** icon.

A dropdown box containing the marker options will appear when the **Markers** icon is selected:

Markers
- Surface
- Object
- Hide
- Cancel

Surface Marker allows a marker to be placed at zero depth level on the radargram. This is useful for marking a feature that is visible on the surface. It can be marked as you pass the feature or simply reverse the GX HDR antenna over the feature and then select **Surface**.

Object Marker allows a similar marker to the surface marker to be placed at a selected depth within the radargram. Reverse the GX antenna over the feature and select **Object**, a crosshair will appear on the vertical cursor which can be positioned at the correct depth by using the **Navigator** control.
Hide removes the markers from the display. This is not permanent; the markers can be made visible again by selecting Show, which is indicated after Hide is selected.

Select Cancel to exit the Marker Menu.

Note: Markers are saved in a text file with the extension *.mrk. This file get the same name as the data file.

Select Tools to enter the Tools Menu.

A dropdown menu appears when the Tools Icon is selected.

<table>
<thead>
<tr>
<th>What to do:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Calibration</td>
</tr>
<tr>
<td>Hyperbola Fitting</td>
</tr>
<tr>
<td>Migration</td>
</tr>
<tr>
<td>Hide Markers</td>
</tr>
<tr>
<td>Cancel</td>
</tr>
</tbody>
</table>

Set Soil velocity. If the soil velocity has been determined, enter the value by selecting Set Soil Velocity icon and then use the Navigator to set the correct figure.

Depth Calibration. If the true depth of an item is known, place the antenna so the vertical curser is positioned over the feature in the radargram, select Depth Calibration to activate the cross-hair and use the Navigator to position the horizontal curser at the top of the reflector with known depth. Press the Navigator and enter the value for the true depth. Finally, press the Navigator again to accept the value and the GX Controller will automatically calculate the velocity based on the entered value.

Hyperbola fitting. If there is a clear hyperbolic response in the radargram, utilise the Hyperbola fitting feature to calculate the velocity of the soil. Position the antenna so the vertical curser is over the hyperbola, press the Navigator to activate the horizontal crosshair and rotate the Navigator to place the cross-hair on the top of the hyperbola. Press the Navigator to reveal the simulated hyperbola, now rotate the Navigator to increase or decrease the simulated hyperbola so it “fits” the true hyperbola in the radargram. Press the Navigator to complete the process; the calculated velocity will be saved.

Tip: To move the crosshair up and down faster, press down the Navigator and rotate at the same time.

Migration. This option applies migration to the dataset, which will have the effect of removing the hyperbola to leave a point in the radargram. First, complete any of the above velocity calculations to determine the soil velocity and then select Migration to apply the process to the radargram.

Tip: Accurate calculation of the soil velocity is required for the migration to work effectively. Depth Calibration is often the most accurate and this should be the first option if available.
3D Grid Project

3D Grid Project is a tool that makes the gathering and visualization of radar data measured in two perpendicular directions easier.

![3D Grid Project Diagram](image)

A typical Grid Project can be used to map a larger area where the direction and location of utilities for instance is unknown. It enables the use of a plan view of reflections to visualise the utilities. The Grid Project option in the GX Controller will guide you through all steps involved in the data collection to the final processed 3D view of the investigated area.

Tip: Use Guideline Geo’s 3D Vision on you computer for easy visualization of 3D Grid Projects.

Creating a 3D Project

Select **3D Grid Project** from the **Start Menu**

The **New Grid Project** screen appears, the user has the opportunity to select the relevant parameters before data collection begins. The parameters are size of the grid, spacing between lines (profiles) and point interval (trace interval). These parameters are not changeable once the project has been created.

Tip: The text fields with information on site, customer, name etc. can be changed afterwards.
First enter the size of your grid.

Using the Navigator, select and edit the X-size and Y-size.

Then select and enter the Point Interval for the measurement between the traces.

Next select and enter the Line Spacing for the measurement between each profile.

Customer, Operator and Site details can be entered along with any additional comments.

Finally, select **Start the Project**

Note: The maximum size of grid will be determined by line spacing, point interval and time window values.

Note: Line spacing has to be evenly divisable by Point interval.

Before the project commences, a summary screen indicating the chosen settings can be reviewed.

A plan view of the grid and its size is also shown.

Select **Start** to move onto the next screen or **Cancel** to move to the previous screen.

Position the GX HDR antenna in the X=0 & Y=0 position, pointing the antenna in the direction of the Y axis, as indicated by the small red triangle and dashed red line.

Select **Start Line**

Move the antenna to the end of the line.
As the antenna is moved forward, a black line indicates the progression along the grid line. If a mistake is made during the measurement, or the line is not completed, select **Stop** and then **Next Line**, an option will appear to restart the line.

When the line is completed, the **GX Controller** will indicate the completed line by changing the screen ready for the next line.

Move the antenna over to the next grid line and select **Next Line**.

Repeat these steps until the X-axis is completed.

Move the antenna to the start of the Y-axis and continue the measurements along the Y-axis until the grid is completed. Next, select **Stop and Process** to complete the initial processing stage.

Once the processing is complete, the Grid Project screen shows the plan view and one cross sectional (side) view in the X or Y-axis.

Select the **Settings** icon to proceed to the next step.
Set **Background Removal** option to **On** if removal of horizontal lines in the dataset is required.

Next, select **Migration Wizard**, this enables the correct velocity setting to obtain the best possible top view.

Choose an X or Y cross-section with a well-defined hyperbola.

Select the **Velocity** button and increase or decrease the velocity value until the hyperbola becomes a point.

Tip: Too high a velocity value will cause the hyperbola to invert, reduce the value until the desired response/reflector is achieved. The reflector should be in-between the inverted hyperbola and the standard hyperbola.

Finally, select the **Quit** button to exit and apply the migration to the entire data set.
Select the **X-Section** button to view the X-axis data in the side view. When activated, use the **Navigator** to scroll across the data set.

Select the **Y-Section** button to view the Y axis data in the side view.

Select the **Depth** button and use the **Navigator** to scroll through the time slices in the top view window.

Select the **Full Screen** option. This enables access to the screen capture options.

Select the **JPEG** button to access the screen capture options.

In the Settings menu the following options are available as well:

Color
- Change the color scheme for the GPR profiles. Three options are available, a grey scale and two different color schemes.

Soil Velocity:
- Set the velocity based on field tests or soil type. Setting the velocity allows adjustment of the depth scale for differing soil conditions.

Warning: This is a critical setting if accurate depth information is required. Soil conditions can vary rapidly with location and all depth information must be used with caution.

Time Gain:
- Set to **Manual** or **Automatic** gain control.

Note: **Manual** gain activates the **Time Gain** button on the main screen and allows the user to manually adjust the gain. Selecting **Auto** deactivates the **Time Gain** button on the main screen and the GX Controller will apply the highest gain level for the conditions.

Migration
- Select **Migration** to **On**, this applies migration to the 3D Project.
Select the correct level of backlight for the ambient light levels. This setting can be adjusted within the range of 0–100%.

Tip: Reducing the backlight will extend the battery life between charges.
ObjectMapper Project

An ObjectMapper Project is a tool to easily handle and interpret radar profiles acquired with the GX Controller, where a number of radar profiles are linked to a common baseline or positioned with GPS. See the examples below.

Once an ObjectMapper Project is created within the GX Controller, it can be directly opened in the ObjectMapper program, a Windows based interpretation software for quick mapping of underground features. For further information, see the ObjectMapper Operating Manual.

Creating an Object Mapper Project

Start working with Object Mapper Projects by selecting ObjectMapper Project on the Start Screen

ObjectMapper Project start screen
Select **Settings** to apply correct measurement values. See *Measurement Parameters Menu* for full details.

Select **New Project** to start the project and move onto the following screen:

Select **Project Name** to tag a name to the project. Use the Navigator to enter the name, one character at a time.

To activate the GPS positioning, set the **GPS positioning** to **On**.

Note: If the GPS option is **ON**, no baseline is needed, and the X-Y co-ordinate options are deactivated.

The location of the baseline is given by setting the X and Y-coordinates of the start and stop positions of the line. If no coordinates are available, the baseline is defined as 0 m for X and Y start position and then the length of the line for X or Y stop position.

Tip: The coordinates for the baseline can be edited later in the ObjectMapper program.

When the baseline is defined or GPS Positioning is ON, press **Start the project** to collect the ObjectMapper files.

Tip: In this screen, before pressing **Start the project**, the GX System measuring wheel can also be used as a measuring tape, showing the travelled distance at the bottom of the screen. To set the measuring tape function to zero, select the **Current Distance** option and press the Navigator once.
Object Mapper Measurements with Baseline

When the **Start the project** button is pressed, the **Start Profile** screen appears.

Once **Start Profile** is pressed, the user returns to the ordinary measurement screen. The additional **Baseline Crossing** icon will be active on this screen.

When passing the baseline, select the menu option **BL Crossing** (bottom button) to place a marker on the GPR profile. This marker will be used to connect the current profile to the defined baseline.

Note: The baseline crossing marker can be created anywhere along the GPR profiles e.g. at the beginning, middle or end but the baseline must cross through all the profiles. If starting the profile directly on the baseline, press **BL Crossing** immediately after pressing **Start**, in other words, before moving the antenna.
After pressing **BL Crossing** the screen to the left is seen.

Here the current profile’s positioning is defined, in terms of distance from the baseline start point and the direction of the profile in relation to the baseline. See the picture illustration below.

First set the distance from the baseline start point to the current profile. Then select the angle of the profile to the baseline start point. Finally, select **Create the crossing**, the screen reverts back to the measurement screen and a blue marker dot is seen on the GPR profile. Continue the measurement along the current profile.

Once a profile is completed, select **Stop**; the **Start Profile** screen will be seen and a new profile can be started as usual, again applying the **BL Crossing** option when passing the baseline.

Key:
1: Orientation to baseline start point. In this case it is 270 degrees.
2: Distance from the start of the current profile to the baseline
3: Distance from baseline start to the current profile
4: Previous distance

Note: The GX Controller and the ObjectMapper project will automatically suggest the distance and the angle to the baseline start after 3 passes of the baseline.

Tip: Moving in the opposite direction after each profile is finished (i.e. “zig-zag”) can optimise data collection. If measuring every second profile in the opposite direction and at a right angle to the baseline the angle from the profile direction to the baseline start will be 270, 90, 270, 90 and so on.
When all the ObjectMapper profiles are measured, select **Stop ObjectMapper Project** on the **Start Profile** screen to close and save the ObjectMapper Project.

This project is easily uploaded to a computer (see the *Transferring Data* section) where it can be opened in the ObjectMapper PC software, for simple interpretation of underground features. For further information, see the *Object Mapper Operating Manual*.

Tip: Separate files can be opened or uploaded from the project, enabling the user to view individual profiles if required.

Object Mapper measurements with GPS

To create a project with GPS positioning, start a new project and select the **GPS Positioning** to **On** and select **Start the Project**.

Next, select start profile and the screen will return to the main measurement screen.
Tip: With GPS positioning activated, the user can complete one long profile in a zig-zag formation around the area to be surveyed or stop and start profiles to create a number of parallel profiles.

When the project is complete, select **Stop ObjectMapper Project**

Note: When using the GPS option for ObjectMapper projects, make sure the GPS has high precision positioning

Continuing an Object Mapper measurements Project

To continue a previously started ObjectMapper Project select **Continue Project** in the Project Main screen.

Use the **Navigator** to choose between the different Object Mapper Projects in the drop down menu and press the button to continue the selected Project.

Positioning Menu

In the Positioning Menu, the incoming GPS coordinates are viewed.

Here you also have the possibility to use the connected measurement wheel as a measuring tape.
In the File Manager menu all measured files and projects are found. Here you can select, mark several files and delete or upload the same.

2D files has the file extension *.rd7, ObjectMapper projects *.obm and 3D Grid Projects *.rhd

Note: For the ObjectMapper and 3D Grid Projects all made files in one project are uploaded at the same time.
MALÅ GeoDrone 80 Project

If the GX Controller is connected to a MALÅ GeoDrone 80, the GX controller will automatically show the GeoDrone Start Menu options at start.

Press to start a GeoDrone Project.

The GeoDrone antenna is connected to the GX Controller by WiFi. If this is active the WiFi symbol is seen in the upper right corner.

The default settings are suitable for most applications but if necessary, adjust settings in the settings menu.

Start New Profile press

Note: The antenna has an in-built data storage module, which enables data to be stored whilst taking measurements. This enables a more secure way of data collection as data transmission can be interrupted when utilising Wi-Fi. Data are restored to the Controller when Wi-Fi connection is established again or by data cable. Read more in Wifi Option and Settings section.

Note: More information on MALÅ GeoDrone measurements can also be found in the MALÅ GeoDrone User Guide.
To enter the System Menu, select 📚 on the start screen.

The **GX Controller** will now enter the System Menu.

Select **Time and Date** to modify the internal clock settings.

Select **Battery max level** to set the battery level indicator. Enter 12 (Volts) if a generic external 12Volt battery is being used; select 11 for the MALÅ battery packs.

Battery Save Mode allows the user to activate or de-activate the backlight dimming option.

Select **Imperial** or **SI** for the appropriate local requirements.

Select the **Hardware Tests** icon to enter the hardware test screen. Select **Start Test** or **Start Ethernet Test** to start the self-test procedure. Each item of hardware will be tested sequentially with the results of each test displayed on the screen and written to a file. Once the test is completed, select **Upload “test_results.jpeg”** to save the results to USB memory device.

Used to reformat the SSD radar data storage device in the **GX Controller**.

Select the **Data Disk Format** option and press the **Navigator** to initiate reformatting.

A confirmation dialog is displayed before commencing the operation.
Tip: It is recommended that reformatting is performed periodically to maintain peak performance for data management.

Note: Reformatting does not affect the operating system or the GX Controller software.

The GX Controller software can be upgraded by downloading the latest software from the downloads page of the Guideline Geo website and transferring them onto a USB data storage device.

Copy the file `ram10img.gz` (and parameter files: `eeprom_1`, `eeprom_2` if they exist) to the root of a USB data storage device.

Insert the USB data storage device into the GX Controller USB port and select Software Upgrade. If a confirmation request is displayed, accept the request by selecting YES.

The upgrade can take several minutes to install and the GX Controller will re-boot after installation.

Warning: Make sure the batteries are fully charged before starting the software upgrade and DO NOT turn off the GX Controller while the upgrade is in progress.

Rotate the Navigator to select the Restore Predefined Settings option and press to perform a reset when experiencing problems, or if you would like to reset the settings to a predefined state. A confirmation dialog is displayed before reset operation is performed.

Note: This restore is a low-level reset and should be performed as the first option before executing the Restore Factory Settings option.

Select the Restore Factory Settings option and press to perform a reset when experiencing problems, or if you would like to reset the settings to the default factory settings. A confirmation dialog is displayed before reset operation is performed.

Select Next Screen to access additional System Menu options.

Default Start Depth value determines the depth window at start of a scan. The entered value has no effect on the total depth of the time widow.

Select GPS ON/OFF to toggle the GPS function on or off depending on requirements.

Select the rotation direction of the Navigator by toggling Navigator invert rotations False/True.
GPS options and settings

Select **GPS Parameters** to enter the settings screen for the GPS options.

There are 3 options for the **GPS Interface/Unit** setting.

- **Built-in**, this option selects the built-in DGPS module. Select the correct **SBAS Region** for your area.
- **COM Port**, this option is selected for an RTK GPS input via the serial COM port. Once this option is activated, various parameters will be activated, see below.
- **USB**, select this option if a simple GPS antenna is attached to the USB port.

Choose the correct SBAS Region for your measurements. The different regions are displayed on the map as you toggle between them.

Note: The correct GPS output settings are seen on top of the GPS parameters screen.
COM Port settings for external RTK GPS.

The Select accuracy for green option allows the user to set the tolerance for the GPS precision indicator that is displayed at the top right of the monitor's screen while in Started mode.

Use the High setting if utilising an RTK GPS.

Select the correct values for the COM Port Baud Rate and CheckSum Validation to match the external RTK GPS output.

A small external puck type GPS antenna can be connected to the GX, select USB in the settings to activate this option.

The GPS indicator will show the level of accuracy from the GPS.

Note: The external RTK GPS antenna can be mounted on the GX antenna using the optional bracket.
WiFi options and settings

The WiFi optional extra enables the user to connect the antenna to the GX controller without the use of the data cable i.e. wireless. This may be desirable when the antenna is used remotely from the GX controller. If you are using the GX system in one of the cart options, we recommend that you use the wired option as this will give a more stable connection between the antenna and the GX Controller and longer battery life.

![Antenna with WiFi option (blue button)](image)

Note: Using the WiFi option will increase battery consumption and therefore reduce the life of the batteries. In addition, the operational speed of the system will be reduced.

WiFi Connection

Remove the data cable between the antenna and GX Controller. Power up the system as normal and check the blue WiFi button has the blue LED illuminated. If the blue LED is not lit, press and release the blue button. The system will take approximately 60 seconds to establish communications between the antenna and the GX Controller. Once communications are established, the WiFi and Communications icons will show next to the battery icon as follows.

<table>
<thead>
<tr>
<th>Icon Description</th>
<th>Text Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WiFi switched on and communications established</td>
</tr>
<tr>
<td></td>
<td>WiFi switched on but no communications established</td>
</tr>
</tbody>
</table>

If the Wi-Fi icon is not showing, go to the System Menu (as described on page 46), then continue to screen 2 via the “Next Screen” icon and select the Wi-Fi Settings icon.
System Menu (screen 2)

Rotate the Navigator and select the Wi-Fi ON/OFF option to activate the Wi-Fi.

When ON the WiFi Symbol should be seen in the upper right corner.

Note: WiFi initialisation can take up to 60 seconds to complete, please be patient.

Incorporated into the WiFi system is an in-built data storage module in the antenna, this enables data to be stored independently whilst taking measurements to enable a more secure mode of data collection. Data transmission can be interrupted when utilising WiFi and the in-built storage guarantees that data continue to be safely collected during the WiFi drop out. The in-built memory module can also be utilised whilst taking measurements with the data cable connected. This function is automatically activated when the Wi-Fi option is switched on.

Wire WiFi Channel Selection

This option allows you to choose an alternative WiFi channel; this may be necessary if the signal is poor during WiFi measurement. The wireless communication may be affected if many devices share the same channel with the GX HDR GPR. Choosing the best WiFi channel on your GX helps to reduce interference and improve your WiFi signal. The best option would be to use a WiFi analyzer app on your smartphone to ascertain the local WiFi channels that are most congested. Choose and install a free app from the App Store or Google Play and launch it. Use the overview option to see the wireless networks in your area.
and which channels are the quietest. Some apps will inform you which WiFi channels are better for a good connection.

Once you have chosen the new channel, it will take approximately 1 minute to finish the channel switching.

Restoring Missing Traces
It is possible to move the antenna away from the GX Controller once a measurement has commenced. During this remote operation, or if the WiFi is disrupted when working locally, the in-built memory card in the antenna will store the GPR data thus enabling the measurement to continue. To stop the measurement, the GX antenna and Controller must come back into WiFi range.

Once the measurement is stopped, and if there are missing traces, the controller will display this message.

Once the restoration process is successful, press the rotary Navigator button to close the window.
If the Controller experiences difficulty restoring the missing traces, it may be necessary to restore via wired connection.

If this Restore Via Wire message is displayed, press the Navigator button to close the widow, connect the data cable between the antenna and the Controller. Switch the WiFi off and then proceed to the Work With Files option on the Start Screen.

Choose the correct file and then select the Restore button.

WiFi Initiation via Wire

Users may experience occasions when the Controller does not automatically connect to the antenna when the WiFi is activated or when the system is switched on.

If this occurs, select the “WiFi Initiation via Wire” option (System Menu -> WiFi settings)

Note: WiFi initialisation can take up to 90 seconds to complete, please be patient.
Troubleshooting

MALÅ GX HDR has been designed to be robust and reliable under adverse conditions. If you encounter a mechanical failure that cannot be fixed on site, please contact Guideline Geo or your local Guideline Geo representative for advice.

System Malfuinctions

Most malfunctions are power/data communications or user settings related. Before contacting your local Guideline Geo office or authorized dealer please follow these simple steps:

Check user settings

Enter the Measurement Parameters menu and check the settings for Acquisition Mode, Wheel Type, Point interval etc.

Check battery capacity

Connect the battery to the charger and switch on the charger at the electrical outlet. The light on the battery charger should be either yellow or green indicating an operative charge. If the indicator light is red, continue charging until the charging cycle is complete, i.e. indicator light turns green.

Check connectors

Disconnect and reconnect the battery pack on the GX HDR antenna.

If using the external battery bag, disconnect and reconnect the battery connector in the battery bag.

Disconnect and reconnect both ends of the data cable between the antenna and the MALÅ GX Controller.

Check the pulse encoder connector on the rear of the antenna.

When disconnecting/reconnecting, check the connectors for dirt or foreign objects.

Restart MALÅ GX HDR Controller and Antenna

Turn off the MALÅ GX HDR antenna and controller, by first selecting QUIT from the on-screen menu options on the Controller, confirm the action by selecting YES, then push the power button on the Controller and release quickly. The red light will then stop blinking and the unit will also emit a click when turning off. Wait 10 seconds before switching on the Controller and antenna.

Note: If the Controller is not responding, turn the unit off by pushing the power switch.
Service and Repairs

To maintain maximum performance, the MALÅ GX HDR should be regularly serviced. Contact Guideline Geo or your local Guideline Geo representative for more information on how to service your MALÅ GX HDR.

Technical Support

Guideline Geo is committed to providing exceptional product support. Our technical support representatives are available online to help you find answers to even the most challenging technical support issues. Our experienced support team works very closely with the development teams to ensure that every client receives the best possible support.

Technical support requests can be made directly from our website: www.guidelinegeo.com
MALÅ GX80 HDR

Technology: MALÅ Semi-Real-Time pat pending
Antenna center freq.: 80MHz
SNR: > 114.4dB
Significant/useful number of bits: > 19 bit
Survey speed: > 1200 [km/h] point distance 812nm
Data acquisition rate: 160MHz
Operating time: 5 h
Bandwidth: >120%, fractional, -10dB
Positioning: Inbuilt DGPS, external GPS, Wheel encoder
Power supply: Interchangeable 12V/8.7Ah Li-Ion battery or any external 10-15V DC source
Power consumption: 1.3 A
Acq. Mode: Wheel, time or manual
Dimensions: 1010x780x220 mm
Weight: 24.6 kg
Operating temp: -20° to +50°C or 0° to 120°F
Environmental: IP65

MALÅ GX160 HDR

Technology: MALÅ Semi-Real-Time pat pending
Antenna center freq.: 160MHz
SNR: > 107dB
Significant/useful number of bits: > 17 bit
Survey speed: > 880 [km/h] point distance 625ns
Data acquisition rate: 160MHz
Operating time: 5 h
Bandwidth: >120%, fractional, -10dB
Positioning: Inbuilt DGPS, external GPS, Wheel encoder
Power supply: Interchangeable 12V/8.7Ah Li-Ion battery or any external 12V DC source
Power consumption: 1.3 A
Acq. Mode: Wheel, time or manual
Dimensions: 720x480x190 mm
Weight: 10.7 kg
Operating temp: -20° to +50°C or 0° to 120°F
Environmental: IP65

MALÅ GX450 HDR

Technology: MALÅ Semi-Real-Time pat pending
Antenna center freq.: 450MHz
SNR: > 101dB
Significant/useful number of bits: > 16 bit
Survey speed: > 770 [km/h] point distance 300ns
Data acquisition rate: 160MHz
Operating time: 5 h
Bandwidth: >120%, fractional, -10dB
Positioning: Inbuilt DGPS, external GPS, Wheel encoder
Power supply: Interchangeable 12V/8.7Ah Li-Ion battery or any external 12V DC source
Power consumption: 1.3 A
Acq. Mode: Wheel, time or manual
Operating temp: -20° to +50°C or 0° to 120°F
Environmental: IP65
MALÅ GX750 HDR

Technology:
MALA Semi-Real-Time pat pending
Antenna center freq.:
750Mhz
SNR:
> 97dB
Significant/useful number of bits:
16 bit
Scans/sec:
> 1290, time window 75nS
Survey speed:
460 (km/h) point distance 10cm
Data acquisition rate:
160MHz
Time window:
75ns
Operating time:
5 h
Bandwidth:
>120%, fractional, -10dB
Positioning:
Inbuilt DGPS, external GPS, Wheel encoder
Power supply:
Interchangeable 12V/8.7Ah Li-ion battery or any external 12V DC source
Power consumption:
1.3 A
Acq. Mode:
Wheel, time or manual
Dimensions:
375x235x170 mm
Weight:
3.6 kg
Operating temp:
-20° to +50°C or 0° to 120°F
Environmental:
IP65

MALÅ Controller

Processor:
1.6GHz Intel Atom
Display:
1024 x 768
OS:
Linux
Memory:
8GB compact Flash memory
Data output resolution:
32 bit
Comms:
Ethernet, USB3.0, RS232 (serial)
GPS:
Integrated support for built-in GPS, or external GPS via USB/serial port (NMEA 0183 protocol)
Power supply:
Internal 12V/20.8 Ah Li-ion battery, can be powered from any external 10-15V DC source.
Charger:
Internal charger, can be charged from any external 12-15V DC source.
Power consumption:
1.3 – 2.0 A
Operating time:
8 – 10 h.
Dimensions:
430x360x180, including handles
Weight:
3.2 kg
Operating temp:
-20° to +50°C or 0° to 120°F
Environmental:
IP65